Thursday, January 29, 2015

Transfer Reactions: A Way To Create Stable Elements Beyond 106?


Even though creating transuranic elements in the lab has been regarded to as a mere “scientific curiosity”, is there a way to create new ones beyond the atomic number 106?

By: Ringo Bones 

 These days, most of the general public is not jumping up and down with excitement when it comes to synthesizing new elements beyond the atomic number 106. But for almost 35 years now, there has been a very promising method of creating “relatively stable” new elements beyond the atomic number 106. 

At the start of the 1980s, nuclear chemists have thus far been frustrated in their attempts to create super heavy elements with atomic numbers greater than 106, although theories predict that some such elements may be relatively stable. Back in 1980, hopes turned to “transfer reactions” in which one nucleus transfers a portion of its nucleons to another nucleus during a collision. Traditionally, it has been believed that colliding nuclei should combine totally to form a compound nucleus, but Prof. Darlene Hoffman and colleagues from Los Alamos Labs in New Mexico observed that partial combinations occur in certain reactions. The transfer mechanism holds out hope for producing some of the super heavy elements. 

Back in 1999, the technique of transfer reactions did manage to generate some excitement – and a brand new element. Via an e-mail announcement back then, scientists at the Joint Institute for Nuclear Research in Dubna, near Moscow reported strong evidence that they have created the heaviest element yet, one with 114 protons and 184 neutrons. In a recently published work back then, a team of nuclear physicists led by Yuri Oganessian and Vladimir Utyonkov smashed a rare isotope, calcium-48 with a plutonium-244 target to make the element 114. The then brand new element lasted an astonishingly long 30 seconds before decaying into another lighter element, far longer than the 280 microseconds of the last new element found – element 113. The relatively long life of element 114 proves that “islands of stability” exist in the super heavy element range. 

Tuesday, January 27, 2015

Do Protons Really Last Forever?



With the lower limit for the lifetime of a proton is described to be 100 billion trillion times longer than the age of the universe, do protons really last forever? 

By: Ringo Bones 

Those Madison Avenue “Mad Men” hired by DeBeers may have been a little way off the mark when they made a bold advertising claim that “A diamond is forever” – well, at least on a human timescale. But in the world of theoretical physicists – which we are also a part of – there is something that may indeed really last forever and could potentially even outlast our own universe. 

Given the current experimental evidence obtained so far, theoretical physicists has reached a current consensus that the lower limit for the lifetime of a proton – which forms part of the atomic nucleus of ordinary baryonic matter – is described to be at least 100 billion trillion times longer than the age of our universe – which current experimental observations pegged it to be about 13.8 billion years old. For almost 40 years, Scientific American magazine has published several articles on various experiments – some of them are even elaborately grandiose in scale – to determine the absolute lifetime of a proton. 

In particle physics, proton decay is a hypothetical form of radioactive decay in which a proton decays into lighter subatomic particles, such as a neutral pion and a positron. As far as particle physics knows, proton decay has yet to be observed and there is currently no experimental evidence that proton decay even occurs.
In the Standard Model, protons – a type of baryon – are theoretically stable because their baryon number is conserved, that is under normal circumstances; however there is that “chiral anomaly”. Therefore protons will not decay into other particles on their own because they are the lightest – and therefore the least energetic – baryon. 

Some theoretical studies beyond the Standard Model, grand unified theories (GUTs) explicitly break the baryon number symmetry, allowing protons to decay via the Higgs Particle, magnetic monopoles or new X-bosons. Proton decay is one of the few observable effects of the various proposed grand unified theories. To date, all attempts to observe a proton’s decay so far have failed, but some theoretical physicists have proposed that the continuously accelerating expansion of our own universe since the Big Bang might affect the apparent stability of the proton – maybe perhaps 100 billion years from now. 

Wednesday, June 4, 2014

Tantalum: The Newest Precious Metal?


Given that the advent of the smart phone, mobile phone and tablet computer boom a few years ago now made tantalum more expensive than silver – does this mean that tantalum is the newest precious metal?

By: Ringo Bones

Even though it has been in use in high performance electronic gear since the technological boom of the 1960s, it is only when the massive demand for mobile phones, smart phones and tablet computers a few years ago has finally made tantalum more expensive than silver making it the newest addition to the precious metals family. Chemical symbol Ta, atomic number 73, tantalum is a metallic chemical element. It is a member of the vanadium family which includes niobium and vanadium. Tantalum was discovered in 1802 by Anders Gustav Ekeberg and an ultrapure specimen was finally purified by Swedish chemist Jöns Jakob Berzelius in 1820. 

The name of the element is derived from Greek mythology: King Tantalus, the son of Zeus, was punished by being placed in a pool in which the level of water receded from him each time he tried to drink; the name of the element is thus symbolic of the difficulty encountered in its isolation that lead to the discovery of the element. Tantalum is freed from its various ores by caustic or by potassium monosulfate fusion followed by water extraction to give the water soluble solution. 

During the technological boom of the 1960s, the principal source of tantalum is iron tantalite which is chemically similar to the mineral columbite. In the 1960s, the African country then known as Rhodesia – which since 1980 has been renamed Zimbabwe when Robert Mugabe took over when it became independent from the UK – produces about 70 percent of the world’s supply of the metal. But since the 21st Century mobile phone, smart phone and tablet computer boom, virtually all tantalum produced today are sourced from the mineral coltan which is, unfortunately, mined in conflict zones in Africa by warlords to underwrite their various military adventurism in the Democratic Republic of Congo, Sierra Leone and neighboring countries - as in classified as a "conflict mineral" by the United Nations and the World Trade Organization.

Tantalum is a white metal, remarkably ductile, malleable, strong and tough. It has a melting point of 3,100 degrees Celsius and a boiling point of 6,000 degrees Celsius and a density of 16.69 grams per cubic centimeter. Tantalum resists the action of acids, including the one capable of dissolving gold called aqua regia - which is a mixture of nitric acid and hydrochloric acid, but tantalum can be dissolved by a mixture of nitric acid and hydrofluoric acid.  

Tantalum is used to make dental and surgical instruments, corrosion-resistant equipment, electrodes, rectifiers, pens, receptacles, tubes and other chemical-engineering devices are readily formed for use in reactions utilizing corrosive vapors and liquids and in vacuum furnace parts. In the electronics industry, those ultra-compact acid electrolyte tantalum electrolytic capacitors which are 20 times smaller than aluminum electrolytic capacitors of the same capacitance value and working voltage and pulsating direct current is obtained from alternating current by the use of tantalum-lead-sulfuric-acid-rectifier and electric-lamp filaments.

Other electrical and electronic uses of tantalum is the World War I era tantalum alloy rechargeable batteries that made the company who made it - Tannoy - famous the world over, though these days, Tannoy is more famous as a high-quality Scotland based hi-fi loudspeaker manufacturer than a World War I era rechargeable battery manufacturer. In addition, tantalum is used as an alloying element with both steel and tungsten and in standard weights. Tantalum carbide is a very hard substance that’s used for drill points and other cutting devices. 

Almost impervious to corrosion, tantalum is vital in surgical repairs of the human body: it can replace bone – for example in skull plates – as foil or wire, tantalum connects torn nerves. Used as woven gauze, tantalum binds up abdominal muscles. Tantalum’s good thermal conductivity give it utility in the production of surgical splints, screws, nails, sheets, gauze, plates, etc. for use in internal body repair. 

Monday, August 19, 2013

Germanium: Most Scientific Member of the Periodic Kingdom?



Even though it has been superseded in its importance in the solid state electronics industry by its more regal sibling named silicon, is germanium nonetheless the most scientifically active member of the periodic kingdom? 

By: Ringo Bones

Even though germanium was the first semiconductor used when the first solid state transistors first went into commercial production in the middle of the 1960s because it was then easier to “dope” than its silicon sibling – i.e. the iconic Mullard AD 149 PNP germanium transistor from the Golden Age of Stereo – the element has since been relegated for more serious scientific endeavors as opposed to the glamour of the consumer electronics industry. But first, here’s an introductory curriculum vitae of the element germanium.
Germanium, chemical symbol Ge, is a metallic chemical element. It is a member of the carbon family, which also includes carbon, lead, silicon and tin. Germanium was discovered by Clemens Winkler in 1886 – 14 years after Dmitri Mendeleev had predicted its existence via his periodic table of the elements and called it eka-silicon. Its primary use is in transistors and in the current solid state electronic microchip industry in conjunction with silicon. Germanium is found in many sulfide ores, especially those of silver, lead, tin, zinc and antimony. Germanite is a complex sulfide of copper, iron, zinc and lead which contains 5 to 8 percent germanium; argyrodite is a silver sulfide with 5 to 7 percent germanium. The main commercial source of germanium is the cadmium fume dust obtained in sintering zinc concentrates. The world’s leading producers of germanium are Belgium, Japan and South-West Africa. 

Germanium is found in Group IV-A of the periodic table, falling between silicon and tin. Germanium is a grayish white, hard and brittle. It is a semiconductor and is used in transistors, tunnel diodes and in germanium rectifiers. Germanium is stable in the air and resists the action of acids and bases. It has a valence of +4 and +2 in its compounds, which resemble those of tin. 

One of the first serious scientific utilization of germanium happened near the end of the 1960s when Professor Frank J. Low of the University of Arizona developed a device called a germanium bolometer. The devices heart consists of a tiny germanium crystal that is cooled with liquid helium to turn it into a very sensitive thermometer. The germanium bolometer was first tested on a University of Arizona astronomical telescope with a 60-inch parabolic mirror to enable it to detect very weak infrared radiation given of by distant celestial bodies. The telescope’s mirror focuses the gathered infrared radiation on a detector - called a germanium bolometer - that precisely measures planetary temperatures elsewhere in our Solar System that’s millions of miles away. The instrument is able to detect a hundred-trillionth of a watt of infrared radiation – equivalent to sensing the heat given off of a lighted cigarette 10,000 miles away. 

In our current scientific hunt for that elusive “substance” that makes up over 90 percent of the whole Universe and yet we cannot even see or sense it with our unaided senses called dark matter, we had called on the help from germanium. A cylinder of ultrapure germanium cooled to near absolute zero and stored 5 miles underground and shielded against stray background radiation that might skew the results – is the latest serious scientific set-up - a “germanium dark matter trap” if you will – is now used to capture the evidence that might finally prove beyond the shadow of the doubt confirm the existence of dark matter. 

Thursday, September 27, 2012

Will There Be A Worldwide Helium Shortage?


Thanks to their inherent ineptitude of all things scientific and commercial, did the US Republican Party manage to condemn the world to a looming helium shortage that could have been avoided back in 1996?

By: Ringo Bones

Primarily used as a lifting gas, the recent helium spike in price from 75.75 US dollars per thousand cubic feet to 84 US dollars had raised alarm bells to specialist traders with the wherewithal to know that in a worldwide helium shortage, we can very much kiss goodbye all of the modern “miracles” that runs our 21st Century civilization – as liquid helium is currently the only thing that makes the superconducting magnets of every MRI machine work. But is the looming worldwide helium shortage primarily a fault of the inherent ineptitude of the US Republican Party of all things scientific and commerce-related?

Back in 1996, the US Republican Party majority congress overturns the long-established Helium Strategic Reserve Initiative and allowed US government surplus reserves of helium gas to be sold off to private companies, privatizing the US Federal Helium Program, by requiring that all of the US government’s helium supply to be sold off by 2015. Given that the United States produces 30 per cent of the world’s commercial helium supply and privatizing it meant private helium producers will only make the gas if it can make a profit – what incentive is there to set up a “private” US helium strategic reserve? A bone-headed move that resulted in the recent price spike on commercially produced helium gas.

Currently, the US Senate is considering a bill called the Helium Stewardship Act of 2012 that would extend the 2015 deadline for the selloff of the Federal Helium Program thus allowing the federal government to continue supplying world markets with helium by selling it at market prices instead of government-set prices. But why such a noble gas called helium - which was for all intents and purposes – nothing more than an obscure scientific curiosity at the very tail end of the 19th Century be now inexplicably linked with humanity’s destiny for the next millennium?

When helium was first identified as an element back in 1868 by a spectroscopic analysis by a scientific team on an expedition that had traveled to India to study the Sun in during a scheduled solar eclipse – it almost reintroduced the concept of celestial matter – i.e. matter that is different from gross matter or earthly matter – which was previously debunked by Isaac Newton years before. Even in 1871, when Sir Joseph Norman Lockyer and Pierre Jules César Jansen conclusively proved that that the “yellow line” of helium’s spectra was not due to any element found on Earth. The source of its discovery was commemorated in the name of the new element, the word “helium” being derived from helios – the Greek name for the sun. Almost a quarter of a century passed before helium was found to occur naturally on Earth.

In 1895, a few months after the discovery of argon, Sir William Ramsay proved that helium is present in the gas expelled when the mineral cleveite – a mixed ore of uranium, thorium, lead and traces of rare-earth elements – is heated. A year later, Heinrich Gustav Johannes Kayser demonstrated the presence of small amounts of helium in the atmosphere. In 1907, Hamilton Perkins Cady and D.F. McFarland analyzed natural gas from an oil well in Kansas which had not burned but extinguished flames and found it to be composed from 1.50 to 21.84 per cent helium.

Helium is widely distributed in nature, although usually in such small amounts that the cost extracting it from such concentrations is commercially prohibitive. The air we breathe contains 0.0005 per cent helium, only krypton and xenon are present in smaller concentrations. Since the early part of the 20th Century, the United States has been the leading supplier of the world’s commercially sourced helium from the only commercially viable source we know so far – i.e. from natural gas wells found in Texas and adjacent states. Such natural gas wells contain about 1.75 per cent helium and 0.5 per cent carbon dioxide, while the rest is composed of methane.

Commercially sold helium is normally extracted from natural gas wells by first extracting the carbon dioxide, then the gas is cooled to -185 degrees Celsius and compressed; this treatment liquefies all of the other gases, except helium and some traces of nitrogen and yields helium that is at least 98 per cent pure – a purity sufficient enough for use as a lifting gas for party balloons and airships. Another method of helium extraction from natural gas is the diffusion process using either quartz, which is almost impermeable to all constituents of natural gas except helium or gas diffusion process using fluorocarbon membranes such as Teflon FEP. Even though the gas diffusion method (quartz diffusion the most expensive followed by the Teflon FEP gas diffusion method) is a more expensive way to extract helium from natural gas compared to cryogenic cooling, it can provide a higher purity of helium for laboratory use.  

Helium is the first element in Group 0 of the Periodic Table. A colorless, odorless, tasteless gas, helium does not combine either with other elements to form compounds or with itself to form diatomic molecules. However, at low temperatures, helium may be incorporated into crystals of other substances as the crystals grow to form “inclusion complexes” or “clathrate compounds”. This may happen if the crystal grows in such a fashion as to form holes of the proper size to hold individual atoms of helium. The clathrate or latticed compounds can have reproducible formulas, since the number of holes in the crystal is reproducibly determined by the method of packing of the molecules. Helium is unusual in its low density, its extremely low boiling point, its close approach to an “ideal” gas and its close relationship to radioactive phenomena.

As the last of the gases to be successfully liquefied, helium – as in liquid helium – is very useful in cryogenic research, from cooling rockets just before launch and especially in superconductivity research. Although during the 1990s, a newer class of superconductors that exhibit conductivity in the liquid nitrogen range of temperatures had more or less reduced liquid helium’s role in superconductivity research as of late. But the most “radical” form or state of helium – called helium II – is produced when the gas is cooled further than ordinary liquid helium – as in only 2.18 degrees Celsius above absolute zero. Helium II is primarily used in the study of superfluid phenomena – i.e. fluids with zero viscosity and exhibit perfect flow that these fluids – like helium II, manages to flow out of their own open containers without tipping them.

Despite advances in robotics, the offshore crude oil drilling industry still can't do without human divers engaged in saturation diving to maintain the vital underwater portion of offshore oil rigs- which is also one of the most important commercial applications of helium. While breathing a 96 percent helium and 4 per cent oxygen mix at 20 to 30 times normal atmospheric pressure to enable commercial saturation divers  to dive over 1,000 feet under the sea, the special helium-oxygen gas mix allows humans to breathe in such relatively high atmospheric pressure environments without suffering physiological side effects of nitrogen narcosis and the toxic effects of breathing oxygen at such elevated pressures while going to and from normal to highly elevated atmospheric pressure deep diving environment during a typical saturation diving shift. 

As a lifting gas, helium – when 98 per cent pure - has 14 per cent less lifting capacity than hydrogen gas, which translates into helium lifting 84 per cent of the weight of displaced air. This means that if 7 cubic meters of helium can lift 7 kilograms, 7 cubic meters of hydrogen gas can only lift 1 kilogram more, but given the non-inflammability of helium, helium virtually replaced hydrogen as the lifting gas of choice in balloons and smaller airships still in use since the Hindenburg disaster at Lakehurst, New Jersey back in May 6, 1937. 

Monday, September 24, 2012

What’s Your Daily Dose of Arsenic?


Despite being well-known as a poison and a carcinogen, is our daily dose of arsenic on the rise? 

By: Ringo Bones 

A rather alarming news story about arsenic appeared last year back in the last week of November 2011 where it was divulged that the United States Department of Agriculture, USDA, has since established the allowable limits of arsenic in locally produced and packaged apple juice at 23 parts per billion while the United States Food and Drug Administration’s established allowable limits for arsenic in bottled water is set at 6 parts per billion. And just back in September 20, 2012, both the FDA and Consumer Reports though each of their independent lab tests had uncovered that rice products in the United States from baby food to rice crispies are contaminated with arsenic above allowable limits. 

The levels might seem alarming, but the US Food and Drug Administration has long ago labeled arsenic a Level 1 Carcinogen and according to the FDA’s established guidelines, the sub-lethal dose of arsenic at around 20 to 30 parts per billion has been known to cause lung, liver and bladder cancers – especially inorganic arsenic compounds. And the only advise both the FDA and Consumer Reports can give to dotting parents is to reduce their babies serving of rice-containing prepackaged baby food to once a week. But should everyone be alarmed by their “still-detectible” by current chemical laboratory analysis methods of their daily dose of arsenic? 

Arsenic – chemical symbol As – is a metallic chemical element and is a member of the nitrogen family, which also includes antimony, bismuth, nitrogen and phosphorous. Arsenic ores occur in the form of sulfides, arsenides, arsenates and arsenates. The most plentiful of arsenic-containing minerals are arsenical pyrites. The world’s leading producers of arsenic are France, Mexico, Sweden and the United States. Compounds of arsenic were known in ancient times, one of the earliest references to them being in the writings of the Greek philosopher Theophrastus around 200 B.C. The discovery of the element is generally credited to Albertus Magnus – a 13th Century German philosopher and writer on physics. In 1733 George Brandt established that white arsenic was actually the oxide of the element and in 1817 Jons Jakob Berzelius determined the weight relationship of arsenic to the other chemical elements. 

The principal use of elemental arsenic is as a constituent of alloys. Added to copper-based alloys, arsenic forms arsenic brasses and bronzes, speculum metal and alloys for high-temperature uses; added to lead-based alloys, arsenic is used for battery grids, bearings and cable sheaths; and alloyed with elemental lead it is used for hardening shot. However, most of the arsenic used commercially is in the form of its compounds. Although water-soluble compounds are poisonous, in small doses they are valuable in medicine for the treatment of diseases of the skin and respiratory organs and were used before the era of antibiotics in treating syphilis and arsenicals are now used to treat drug-resistant / antibiotic resistant strains of syphilis and gonorrhea. Before they were banned for environmental reasons, arsenic compounds are also used in the manufacture of insecticides, rodent poisons, weed killers and glassware, for preserving hides and museum specimens and in tanning leather. 

Arsenic became a poison of choice since ancient times because its “symptoms” on the unfortunate victim resembles that of ordinary cholera. And the most likely reason why apples produced in the United States – especially in Florida – contain higher traces of arsenic compared to ones grown elsewhere is that not only because arsenic-containing insecticides were widely used in the United States during the early part of the 20th Century but also because Florida was the main stash point of the US Army’s then strategic stockpiles of Lewisite – an arsenic containing chemical warfare agent – before it was rendered tactically obsolete around the 1950s by more effective nerve agents like Sarin and VX. Lewisite stockpiles were not destroyed safely fast enough before a significant portion of it managed to seep into Florida’s groundwater system. Could British Anti Lewisite or BAL pills be now be made mandatory “daily vitamin pills” for Florida’s residents?